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a b s t r a c t

This article explores how measurement systems having correlated characteristics are analyzed through

studies of gage repeatability and reproducibility (GR&R). The main contribution of this research is the

proposal of a method for multivariate analysis of a measurement system, a method that considers the

weighted principal components (WPC). To prove its efficiency, what was first evaluated were the

measurements of the roughness parameters obtained from AISI 12L14 steel turning machined with

carbide tools. This GR&R study considers 12 parts, 3’operators, 4’replicates, and 5’responses (Ra, Ry, Rz,

Rq and Rt). The data set has a correlation structure that determines 86.2% of explanation for the first

principal component. As another step in proving the method’s efficiency, the study generates simulated

data with different correlation structures for measurement systems classified as acceptable, marginal,

and unacceptable. The proposed method is compared with classical univariate and multivariate

methods. It was observed that, compared to the other methods, the WPC was more robust in

estimating the assessment indexes of a multivariate measurement system.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Quality improvement projects are often characterized by their
objective to reduce variability and achieve zero-defect produc-
tion. If a product fails to conform to these standards, analysts
generally blame the process and then act to improve process
capability. In some instances, however, the process capability
may be fine. Yet the measurement error, when compared to the
variability of the process, remains unacceptable (Al-Refaie and
Bata, 2010). Hence, before a team of analysts tries to improve a
process, they should investigate both the variability of the
measurement process as well as the variability of the manufac-
turing process.

Many manufacturers today use process capability to judge a
supplier’s ability to deliver quality products (Wu et al., 2009).
However, there is no capability unless the process is under
control. Control charts are commonly used to analyze whether a
process is stable. Only once a process is under control statistically
(that is, producing consistently), determination of its capability is
required. This means analysts determine whether it is meeting
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specification limits and producing ‘‘good’’ parts. If the data
include correlated variables, analysts could be misled if they use
univariate techniques. After all, the variables jointly affect the
process. For instance, if analysts employ separate univariate
control charts to track a multivariate situation, they will face a
Type I error. The probability of their plotting a point correctly as
being under control is not equal to the points’ expected values.
The distortion of these values increases with the number of
measurement variables. The literature contains many studies that
analyze, using control charts and process capability indexes,
manufacturing processes having multiple characteristics. Some
of these include: Chen et al. (2005), Villalobos et al. (2005), Yang
and Rahim (2005), Chen et al. (2006), Pan (2007), Pan and Jarrett
(2007), Machado and Costa (2008), Chen and Chen (2008),
Psarakis (2011), Boone and Chakraborti (2012), and Wang
(2012). What is lacking in the literature, however, research on
measurement system analysis with multiple characteristics
(Wang and Chien, 2010).

To draw inferences regarding products and process quality,
manufacturers use quantitative methods. Such methods (e.g.,
process capability indexes and control charts) incorporate data
into the decision-making process. Prior to obtaining data, a
manufacturer should help to ensure its validity by evaluating
the measuring device (Majeske, 2008). According to Wu et al.
(2009), the inevitable variations in process measurements arise
from two sources: the manufacturing process and the gage. In
manufacturing, a measurement system is not used to produce an
exact dimension of a part. Such a system provides measurements
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that, due to errors (random and systematic), vary from the true
value (AIAG, 2010). In any activity involving measurements,
whatever observed variability not due to the product/process
itself,s2

P , is due to measurement error or variability in the
measurement system, s2

MS (Costa et al., 2005; Li and Al-Refaie,
2008; Senol, 2004; Woodall and Borror, 2008).

To identify the components of variations in the precision and
accuracy assessments of measuring instruments, researchers
often rely on measurement system analysis (MSA). The purposes
of MSA are to: (1) determine the extent of the observed variability
caused by a test instrument, (2) identify the sources of variability
in a testing system, and (3) assess the capability of a test
instrument (Burdick et al., 2003). According to He et al. (2011),
MSA is an important element of Six Sigma as well as of the ISO/TS
16949 standards. GR&R is the most common study in MSA to
evaluate statistical variations in the measurement process.
Repeatability is the variation in measurements obtained by one
measuring instrument when used several times by one appraiser
while measuring an identical characteristic on the same part.
Reproducibility is the variation in the average of measurements
made by different appraisers using the same gage when measur-
ing a characteristic on one part (Awad et al., 2009; Burdick et al.,
2003; Erdmann et al., 2010; Polini and Turchetta, 2004; Van Den
Heuvel and Trip, 2002; Wu et al., 2009). GR&R aims to determine
that a measurement system’s variability is less than that of the
monitoring process (Al-Refaie and Bata, 2010; Shiau, 2000; Wang
and Chien, 2010).

1.1. Univariate approach for GR&R studies

As emphasized above, a team of analysts, before analyzing the
process capability of a quality improvement project, should
evaluate the capability of the measurement system. Two methods
commonly used in the analysis of a GR&R study are: (1) an
analysis of variance (ANOVA) approach followed by estimation of
the appropriate variance components; and (2) an X-bar and Range
chart that estimates the standard deviations of the components of
gage variability (Wang and Chien, 2010). Analysts prefer the
ANOVA method because it measures the operator-to-part inter-
action gage error; this variation is not included in the X-bar and
Range method (AIAG, 2010). Burdick et al. (2003) provided a good
review of methods for conducting and analyzing measurement
system capability studies, which are based on the analysis of
variance approach. Dejaegher et al. (2006) used Six Sigma to
measure, analyze, and improve the capability of a procedure
required in the testing of the quality of an active pharmaceutical
ingredient. This was done using multiple GR&R studies to analyze
the capability of the measurement procedure. A design of experi-
ments was next designed to improve this procedure.

Kaija et al. (2010) used the Six Sigma DMAIC (define, measure,
analyze, improve, control) approach to evaluate a process of
printing a dielectric layer with an inkjet printer. Initially, a GR&R
study was conducted to evaluate the proportion of variation
caused by the measurement system and process variation.
Experiments were then planned and analyzed to identify the
parameters having the most significant effects on the output
variables of the dielectric layer’s insulating layer and surface
roughness. Li and Al-Refaie (2008) used the Six Sigma DMAIC
procedure to improve quality through enhancing the measuring
system capability of the wood industry. The measurement system
assessed through GR&R had been considered unacceptable. To
improve it, analysts implemented corrective actions, including
operator training, proper selection of measuring instruments, and
improved measuring procedures. In a second GR&R study, the
authors concluded that the corrective actions had reduced the
%R&R index (percentage of repeatability and reproducibility) by
39.38% and had improved the ndc index (number of distinct
categories) by 168.84%.

Other studies have employed GR&R to evaluate measurement
systems. In proposing a procedure to evaluate measurement
systems and process capabilities, Al-Refaie and Bata (2010) used
GR&R along with four quality measures. The quality measures
were: precision-to-tolerance ratio (P/T), signal-to-noise ratio
(SNR), discrimination ratio (DR), and process capability index
(Cp or Cpk). Costa et al. (2005) addressed the design and
implementation of a measurement system that permitted the
evaluation—quantitatively, objectively, and systematically—of
the superficial paper waviness in industrial practice. The process
of designing the measurement system was presented considering
all its stages, from selection and evaluation of the measuring
device (using GR&R) to the generation and validation of the
statistical model of measurement.

Lyu and Chen (2008) developed a procedure, based on the
generalized linear model, to evaluate the repeatability and repro-
ducibility of a measurement system for data-type attributes. To
calculate the repeatability of the system, the procedure integrated
the iterative weighted least squares (IWLS) method and deviance
analysis. Senol (2004) used an experimental design including
laboratory factors as a measurement variability factor in MSA
studies. This study concluded that environmental and atmo-
spheric conditions, often overlooked in GR&R studies, might
represent a significant contribution to the variability in measure-
ments. Shiau (2000) used a mathematical model of the measure-
ment cost-loss for a measuring device as well as to enhance its
use on-line. The study suggested that the guard limits concept can
both reduce on-line measurement loss cost and be applied to
adopting a marginal gage when no better gage is available.

1.2. Multivariate approach for GR&R studies

The bulk of the studies associated with analyzing the quality
and efficiency of measurement systems are so far limited to a
discussion of one single critical-to-quality characteristic (CTQ).
Currently, the ANOVA method for GR&R studies can be applied
only to univariate data (Wang and Yang, 2007). In assessing
measurement systems that measure multiple characteristics, the
analyst must consider the correlation structure of the CTQs, a task
more suited to multivariate methods. Flynn et al. (2009) used
regression analysis to analyze the comparative performance
capability between two functionally equivalent but technologi-
cally different automatic measurement systems. The systems
were used for acceptance testing of a unit under test. For such
accurate measurements as repeatability and reproducibility, the
‘‘pass/fail’’ criteria for a test unit were inappropriate. Hence, the
authors proposed a methodology that used principal component
analysis (PCA) and multivariate analysis of variance (MANOVA) to
examine whether there was a statistically significant difference
between the system’s measurements. He et al. (2011) proposed
an online multivariate MSA approach to detecting faulty test
instruments in a multisite testing system. The multivariate data
were transformed using PCA. The values of the principal compo-
nents of each test instrument were then compared with the
control limits obtained by analyzing the principal components
of all test instruments.

Majeske (2008) used the MANOVA method to estimate the
variance-covariance matrix for GR&R studies with one, two, and
three significant factors. This work evaluated a measurement
system using data from a GR&R study of a sheet-metal body
panel. In doing so it demonstrated how to adjust a MANOVA
model and estimate multivariate criteria (P/Tm, %R&Rm and SNRm).
Wang and Chien (2010) used the process-oriented basis repre-
sentation method (POBREP) to evaluate a measurement process
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with multivariate data. The results showed that POBREP out-
performed other methods such as PCA and ANOVA. The POBREP
was able to identify specific causes of production problems and
map those into a basis matrix. Wang and Yang (2007) presented a
GR&R study with multiple characteristics using the PCA method.
To assess the adequacy of the measurement system, the study
employed two composite indexes: precision-to-tolerance ratio
and measurement-variation-to-total-variation-of-measurement-
system ratio. The case study showed that, for estimating the
indexes, PCA outperformed the ANOVA method.

This article deals with a multivariate analysis of a measure-
ment system through studies of repeatability and reproducibility
of the measurement process. Its main objective is two-fold: to
propose a new method for multivariate analysis of a measure-
ment system and to assess the performance between the pro-
posed method and those found in the literature. The new method,
Weighted Principal Components (WPC), ponders the scores in
principal component analysis by their eigenvalues. To prove its
efficiency, the study evaluated measurements of roughness para-
meters, obtained from AISI 12L14 steel turning machined with
carbide tools. In this GR&R study, the following are considered: 12
parts, 3 operators, 4 replicates, and 5 responses (Ra, Ry, Rz, Rq and
Rt) with a correlation structure that determined 86.2% of explana-
tion to the first principal component. In addition, simulated data
are generated with different correlation structures and measure-
ment systems that are unacceptable, marginal (may be acceptable
depending on application), and acceptable. The results obtained
by WPC are then compared to those obtained through methods
found in the literature. The numerical example shows that
ANOVA is not a suitable means of treating multiple responses
with significant correlations. The simulation study concludes that
the proposed multivariate method is more robust than that of
MANOVA and PCA.

The remainder of this paper is structured as follows. Section 2
shows how to evaluate a measurement system using the ANOVA,
MANOVA, and PCA methods. Section 3 details the WPC method
proposed by the authors. Section 4 presents GR&R studies applied
to the roughness parameters of AISI 12L14 steel turning; the data
is evaluated using univariate and multivariate methods. In
Section 5, a simulation study is conducted to evaluate the
performance of the methods, especially the multivariate, for
different correlation structures as well as for measurement
systems that are unacceptable, marginal, and acceptable. Finally,
Section 6 presents the main findings involving the analysis using
the univariate method ANOVA and the multivariate methods
MANOVA, PCA, and WPC.
2. Literature methods for GR&R study

2.1. Univariate GR&R study based on ANOVA

In many processes involving measurements of manufactured
products for a single CTQ, the variability may be due to a
measurement error, to variability in the measuring device, or to
variability in the product/process itself. A complete model for a
GR&R study with p parts, o operators, and r replicates is made up
of a two-factor crossed design with interaction as such (Al-Refaie
and Bata, 2010; Burdick et al., 2003; Deldossi and Zappa, 2011;
Erdmann et al., 2010):

ctq¼ mþaiþbjþðabÞijþeijk

i¼ 1,2,:::,p

j¼ 1,2,:::,o

k¼ 1,2,:::,r

8><
>: ð1Þ

where ctq is the response variable measured; m is the mean of the
measured values; ai �Nð0,saÞ, bj �Nð0,sbÞ, abij �Nð0,sabÞand
eijk �Nð0,seÞ are random and statistically independent variables
of parts, operators, interaction and the error term, respectively.
The above components of variance can be translated into notation
GR&R to (Kaija et al., 2010; Li and Al-Refaie, 2008; Senol, 2004;
White and Borror, 2011):

s2
P ¼ s2

a, s2
repeatability ¼ s

2
e , s2

reproducibility ¼ s
2
bþs

2
ab

s2
MS ¼ s

2
repeatabilityþs

2
reproducibility, s2

T ¼ s
2
Pþs

2
MS ð2Þ

The variance components of Model (1) in Eq. (2) can be
estimated using the method Analysis of Variance (ANOVA). More
details on how to calculate the components of variation using
ANOVA can be found in Majeske (2008) and Wang and Chien
(2010).

To determine the acceptability of a measurement system,
analysts commonly uses two indexes in GR&R studies. The AIAG
(2010) recommended evaluating a measurement system by scal-
ing the standard deviation of measurement error to the total
standard deviation of the observed process. This statistic, called
the percentage of R&R, is defined as

%R&R¼
sMS

sT

� �
100% ð3Þ

If the measurement system is, according to the index, less than
10%, it is considered acceptable. If between 10% and 30%, it is
considered marginal—acceptable depending on the application,
the cost of the measurement device, the cost of repair and other
factors. If it exceeds 30%, it is considered unacceptable and should
be improved (AIAG, 2010; Al-Refaie and Bata, 2010; Montgomery,
2005; Woodall and Borror, 2008).

The number of distinct categories (ndc or signal to noise ratio,
SNR) is defined in Eq. (4). A value of five or greater is recom-
mended; a value less than two indicates that the measurement
system is unable to monitor the process (AIAG, 2010; Burdick
et al., 2003; Li and Al-Refaie, 2008).

ndc¼

ffiffiffiffiffiffiffiffiffi
2s2

P

s2
MS

s
¼

ffiffiffi
2
p sP

sMS
ð4Þ

2.2. Multivariate GR&R study based on MANOVA

When a GR&R study considers a two-factors cross design with
interaction for multiple CTQs (q characteristics), the model is
given as (He et al., 2011; Majeske, 2008; Wang and Chien, 2010):

CTQ ¼

CTQ11 CTQ12 � � � CTQ 1q

CTQ21 CTQ22 � � � CTQ 2q

^ ^ & ^

CTQn1 CTQn2 � � � CTQ nq

2
66664

3
77775

¼ lþaiþbjþ abð Þijþeijk

i¼ 1,2,:::,p

j¼ 1,2,:::,o

k¼ 1,2,:::,r

8><
>: ð5Þ

where CTQ¼(CTQ1, CTQ2,y,CTQq) and l¼(l1, l2,y,lq) are
constant vectors; ai�N(0,Ra), bj�N(0,Rb), abij�N(0,Rab), and
eijk�N(0,Re) are random vectors statistically independent of each
other. The above components of variance can be translated into
notation GR&R to

R̂P ¼ R̂a, R̂repeatability ¼ R̂e, R̂reproducibility ¼ R̂bþR̂ab

R̂MS ¼ R̂repeatabilityþR̂reproducibility , R̂T ¼ R̂PþR̂MS ð6Þ

The variance components of Model (5) in Eq. (6) can be
estimated using the method of Multivariate Analysis of Variance
(MANOVA). Before estimating the variance-covariance matrices,
Rp, RMS and RT are calculated as mean squares matrices for part,
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Fig. 1. Detailed flowchart for conducting the WPC method.
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operator, partnoperator interaction and the error term. More
details on how to calculate these components of variation using
MANOVA for multivariate GR&R studies can be found in Majeske
(2008).

The multivariate indexes %R&Rm and ndcm are calculated by
Eqs. (7) and (8), respectively. lPi

,lMSi
and lTi

i¼ 1,2,:::,q are
eigenvalues extracted from variance-covariance matrices,
Rp, RMS and RpT. The acceptance criteria for the measurement
system for the multivariate indexes %R&Rm and ndcm are the same
for univariate indexes %R&R and ndc (Majeske, 2008).

%R&Rm ¼
Yq

i ¼ 1

ffiffiffiffiffiffiffiffiffiffi
kMSi

kTi

s !1=q

100% ð7Þ

ndcm ¼
ffiffiffi
2
p Yq

i ¼ 1

ffiffiffiffiffiffiffiffiffiffi
kPi

kMSi

s !1=q

ð8Þ

2.3. Multivariate GR&R study based on PCA

In dealing with multiple CTQs in a GR&R study, an alternative
method to Majeske’s (2008) MANOVA is, according to Wang and
Chien (2010), PCA. PCA is one of the most widely applied tools
used to summarize the common patterns of variation among
variables. Furthermore, this statistical technique is able to retain
significant information from the first axes of the PCs, since the
variations associated with experimental error, measurement
error, rounding error are summarized in the last axes of PCs
(Paiva et al., 2007).

PCA is algebraically a linear combination ‘ of q random
variables CTQ1,CTQ2,:::,CTQq. Geometrically these combinations
represent a new coordinate system obtained during the rotation of
an original system (Johnson and Wichern, 2002; Mukherjee and
Ray, 2008; Paiva et al., 2008). The coordinates of the axes now have
the variables CTQ1,CTQ2,:::,CTQ q and represent the direction of the
maximum. The principal components are uncorrelated and depend
only on the variance-covariance matrix R (or the correlation matrix
R) of original variables and their development does not require the
assumption of multivariate normality. The ith principal component
can be obtained according to Eqs. (9) and (10).

Maximize : Var eT
i CTQ

� �
Subject to : eT

i ei ¼ 1

Cov eT
i CTQ ,eT

kCTQ
� �

¼ 0, ko i ð9Þ

PCi ¼ eT
i CTQ ¼ e1iCTQ1þe2iCTQ2þ . . .þeqiCTQq i¼ 1,2,. . .,q

ð10Þ

The lexicographical solution to the multiobjective program
in Eq. (9) provides pairs of eigenvalues–eigenvectors ðl1,e1Þ,
ðl2,e2Þ,:::,ðlq,eqÞ, where l1Zl2Z :::ZlqZ0, to obtain both per-
centage of explanation for each principal component and compo-
nent scores using Eq. (10). Eq. (11) represents a complete model
for a multivariate GR&R study with q quality characteristics, p

parts, o operators, and r replicates, a model that can be analyzed
by PCA. This model is similar to a univariate model. The original
responses, however, are replaced by the principal component
scores.

PCq ¼ mþaiþbjþðabÞijþeijk

i¼ 1,2,:::,p

j¼ 1,2,:::,o

k¼ 1,2,:::,r

8><
>: ð11Þ

The variable m is a constant and ai, bj, (ab)ij, eijk are indepen-
dent normal random variables with zero mean and variance, s2

a,
s2
b, s2

ab, ands2
e , for parts (process), operators, partnoperator inter-

action, and error term, respectively. As with the univariate
approach, these components of variance can, according to Eq.
(2), be translated into GR&R notation. Multivariate indexes for
assessing the measurement system are estimated using Eqs.
(3) and (4). Note that all calculations here are obtained based
on scores of principal components.
3. Multivariate GR&R study based on weighted principal
components (WPC)

In their analysis of measurement systems, Wang and Chien
(2010) compared the PCA to two other methods. However, the
authors conducted the analysis separately for each principal
component. This methodology may be inappropriate; analyzing
each component individually may provide different interpreta-
tions. When responses have high correlations (PC1%495%), ana-
lysis of the first principal component explains properly the
variability of the measurement system. When correlations
between the responses are not high, however, it becomes neces-
sary to analyze more than one principal component. Indeed, the
first principal component alone cannot explain the whole
data set.

Therefore, this article proposes the method of a multivariate
GR&R study using weighted principal components (WPC). In this
case, the model response is the result of weighting principal
component scores by their respective eigenvalues. This proposal
is based on the work of Paiva et al. (2010), who used a technique
of multi-objective optimization based on a weighting of the
principal components. They used the technique to study a weld-
ing process with a multiple set of moderately correlated
responses. The WPC method is schematically detailed in Fig. 1
and its steps are described in the following subsections.
3.1. Step 1: assess correlation between CTQs

First, the correlation between CTQs can be obtained by

CorrCTQ iCTQ j
¼

CovarCTQiCTQjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarCTQ i

VarCTQ j

q 8i¼ 1,2,:::,q; j¼ 1,2,:::,q ð12Þ

where VarCTQ i
and VarCTQ j

are ith and jth variances; CovarCTQ iCTQ j

represents the covariance between CTQs.



Fig. 2. AISI 12L14 steel machined on a CNC lathe with a 5.5 kW spindle motor

with conventional roller bearings.

R.S. Peruchi et al. / Int. J. Production Economics 144 (2013) 301–315 305
3.2. Step 2: verify whether significant correlations exist

If significant correlations exist between CTQs, proceed to step
3.1 for a multivariate GR&R study, which will start the process of
evaluating the measurement system using the WPC method. If
such correlations are absent, proceed to step 3.2 to use the
univariate classic method, ANOVA.

3.3. Step 3.1: create WPC vector

The ith principal component can be obtained according to Eqs.
(9) and (10). The lexicographical solution to the multiobjective
program in Eq. (9) provides pairs of eigenvalues–eigenvectors
ðl1,e1Þ,ðl2,e2Þ,:::,ðlq,eqÞ, where l1Zl2Z :::ZlqZ0, to obtain both
percentage of explanation for each principal component and
principal component scores. Considering the matrix of standar-
dized data (Z) and the matrices of eigenvalues (L) and eigenvec-
tors (E), the weighted scores of principal components are
obtained from Eq. (13).

WPC¼ ZTE L¼

CTQ11�CTQ 1ffiffiffiffiffi
s11
p

� �
CTQ12�CTQ 2ffiffiffiffiffi

s22
p

� �
� � �

CTQ1q�CTQ qffiffiffiffiffi
sqq
p

� �
CTQ21�CTQ 1ffiffiffiffiffi

s11
p

� �
CTQ22�CTQ 2ffiffiffiffiffi

s22
p

� �
� � �

CTQ2q�CTQ qffiffiffiffiffi
sqq
p

� �
^ ^ & ^

CTQn1�CTQ 1ffiffiffiffiffi
s11
p

� �
CTQn2�CTQ 2ffiffiffiffiffi

s22
p

� �
� � �

CTQnq�CTQ qffiffiffiffiffi
sqq
p

� �

2
66666666664

3
77777777775

�

e11 e12 � � � e1q

e21 e22 � � � e2q

^ ^ & ^

eq1 eq2 . . . eqq

2
66664

3
77775�

l1

l2

^

lq

2
66664

3
77775 ð13Þ

3.4. Step 4: estimate variance components

The proposed model to evaluate a measurement system using
multivariate GR&R study is given by

WPC¼ mþaiþbjþðabÞijþeijk

i¼ 1,2,:::,p

j¼ 1,2,:::,o

k¼ 1,2,:::,r

8><
>: ð14Þ

that is, the response used in Model (14) is the result of weighting
the principal components by their eigenvalues, according to
Eq. (13). The variable m is a constant and ai, bj, abijand eijk are
independent normal random variables with zero mean and
variance, s2

a, s2
b, s2

ab, and s2
e , respectively. Johnson and Wichern

(2002) provide a variety of rules to estimate the appropriate
number of non-trivial PCA axes (PC scores) that can be taken to
represent the original data set. However, due to the weighting of
the principal components by their eigenvalues, all principal
components can be included in the model. The components with
eigenvalues of greater importance are weighted more, and all the
information is included in the study. The components of variance
in Model (14), based on transformation of the original data-set
into WPC, can be translated into GR&R notation by

ŝ2
P ¼ ŝ

2
a ¼

MSP�MSPO

or
ð15Þ

ŝ2
reproducibility ¼ ŝ

2
bþŝ

2
ab ¼

MSO�MSPO

pr
þ

MSPO�MSE

r
ð16Þ

ŝ2
repeatability ¼ ŝ

2
e ¼MSE ð17Þ
ŝ2
MS ¼ ŝ

2
repeatabilityþŝ

2
reproducibility ð18Þ

ŝ2
T ¼ ŝ

2
Pþ ŝ

2
MS ð19Þ

where MSP, MSO, MSPO, and MSE are, respectively, the mean
squares for the factors part, operator, interaction, and the error
term. Also, if the interaction effect is not significant, the complete
model can be reduced to

WPC¼ mþaiþbjþeijk ð20Þ

Now the components of variance for parts (process) and
reproducibility (operators) in Model (20) are estimated by

ŝ2
P ¼ ŝ

2
a ¼

MSP�MSE

or
ð21Þ

ŝ2
reproducibility ¼ ŝ

2
b ¼

MSO�MSE

pr
ð22Þ

3.5. Step 5: estimate multivariate indexes for assessing the

measurement system

After variance components have been calculated for a multi-
variate GR&R study, %R&Rm and ndcm indexes can be estimated by
using Eqs. (23) and (24). The acceptance criteria for classifying the
measurement system using multivariate indexes, %R&Rm and
ndcm, are the same for the univariate indexes, %R&R and ndc.

%R&Rm ¼
sMS

sT

� �
100% ð23Þ

ndcm ¼

ffiffiffiffiffiffiffiffiffi
2s2

P

s2
MS

s
¼

ffiffiffi
2
p sP

sMS
ð24Þ

Despite the fact that Eqs. (23) and (24) bear a similarity to Eqs.
(3) and (4), all calculations here have been obtained based on
weighted scores of principal components. In fact, correlated CTQs
were transformed into uncorrelated scores of principal compo-
nents and those scores were thereby weighted by their eigenva-
lues for dimensionality reduction in multivariate GR&R studies.
4. Numerical example

In this multivariate GR&R study, five roughness parameters are
analyzed: Ra (arithmetic average), Ry (maximum), Rz (ten point
height), Rq (root mean square), and Rt (maximum peak to valley).
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The work piece, machined on a CNC lathe (see Fig. 2), was AISI
12L14 steel (0.090% C, 0.030% Si, 1.240% Mn, 0.046% P, 0.273% S,
0.150% Cr, 0.080% Ni, 0.260% Cu, 0.001% Al, 0.020% Mo, 0.280% Pb,
0.0079% N2). The machining parameters used in this study were
cutting speed of 345 m min�1, feed rate of 0.086 mm rev�1, and
depth of cut of 0.680 mm. Carbide inserts were used of ISO P35
class, coated with three toppings (Ti (C, N), Al2O3, TiN), (GC
Sandvik 4035) geometry ISO SNMG 09 03 04 – PM, and tool
holder ISO DSBNL 1616H 09.

Using these experimental conditions, four parts were
machined and three noise conditions considered: slenderness of
the part, measuring position, and tool wear. The slenderness (S)
relates the diameter (D) with the length (L) of the part, according
to the relation S¼L/D. The parts were classified as slender and
non-slender, for the same part length, with D¼30 mm and
D¼50 mm, respectively. The following regions of measurement
were selected: close to the main spindle, center, and close to the
barrel. The tool wear noise considered new tool and worn tool
which it was measured on the edge of approximately 0.3 mm.
Table 1
Observed measurements of roughness parameters for the multivariate GR&R study.

j¼1 j¼2

i k Rz Ry Rt Rq Ra Rz Ry

1 1 6.34 7.73 8.81 1.67 1.39 6.37 8.29

2 1 7.61 9.19 9.46 1.85 1.54 7.57 9.17

3 1 6.43 7.67 7.81 1.50 1.23 6.11 7.78

4 1 7.52 9.01 9.01 2.10 1.84 7.53 8.86

5 1 7.28 7.77 8.04 2.30 2.07 7.26 7.84

6 1 7.34 7.92 7.94 2.35 2.12 7.33 7.92

7 1 9.24 10.55 10.55 2.39 1.93 9.27 10.55

8 1 3.74 4.04 4.04 0.93 0.75 3.95 4.32

9 1 4.17 4.84 5.02 0.98 0.79 4.27 4.87

10 1 7.70 8.62 9.25 2.04 1.70 7.83 8.67

11 1 6.85 7.51 7.51 2.01 1.73 6.83 7.49

12 1 7.45 8.29 8.29 2.21 1.95 7.47 8.24

1 2 6.63 7.56 7.79 1.80 1.52 6.64 7.57

2 2 6.46 8.75 8.85 1.58 1.20 6.03 9.55

3 2 6.81 8.27 8.76 1.65 1.29 6.72 7.85

4 2 8.02 9.71 10.12 2.04 1.75 8.10 9.78

5 2 7.00 7.43 7.58 2.29 2.08 7.00 7.40

6 2 7.31 7.82 7.82 2.38 2.15 7.32 7.78

7 2 8.80 10.26 10.26 2.31 1.85 8.72 9.43

8 2 4.02 4.77 4.77 1.02 0.82 4.07 4.58

9 2 3.92 4.26 4.53 0.99 0.80 3.89 4.26

10 2 7.75 9.24 9.91 2.06 1.72 7.79 9.22

11 2 6.65 7.23 7.29 2.01 1.73 6.64 7.20

12 2 7.53 8.48 8.48 2.17 1.88 7.46 8.47

1 3 6.05 7.03 7.07 1.52 1.26 6.06 7.10

2 3 5.70 7.60 7.60 1.37 1.11 5.67 7.51

3 3 6.51 8.46 8.58 1.65 1.37 5.57 9.18

4 3 7.59 9.62 9.62 2.00 1.71 7.65 10.07

5 3 7.07 7.45 7.65 2.26 2.04 7.09 7.43

6 3 7.19 7.89 7.89 2.39 2.17 7.18 7.86

7 3 9.46 10.16 10.23 2.43 1.96 9.54 10.42

8 3 3.80 3.92 4.04 1.00 0.81 3.79 3.96

9 3 3.90 4.00 4.06 1.04 0.83 3.81 3.89

10 3 8.35 10.08 11.38 2.10 1.71 8.49 10.06

11 3 6.77 7.10 7.22 2.04 1.76 6.76 7.19

12 3 7.70 8.02 8.42 2.22 1.93 7.69 8.01

1 4 6.39 7.47 7.55 1.64 1.35 6.32 7.47

2 4 7.86 9.40 9.77 1.86 1.50 7.85 9.47

3 4 7.00 8.79 8.79 1.75 1.42 7.06 8.81

4 4 8.07 10.18 10.18 2.18 1.89 8.04 9.49

5 4 6.96 7.16 7.30 2.28 2.07 6.97 7.28

6 4 7.24 7.56 7.74 2.35 2.12 7.25 7.49

7 4 8.10 8.56 8.73 2.18 1.78 8.11 8.59

8 4 4.34 5.36 5.36 1.09 0.88 4.15 5.08

9 4 4.49 4.74 5.11 1.12 0.90 4.83 5.90

10 4 7.36 8.54 8.99 1.98 1.68 7.39 8.71

11 4 6.73 7.13 7.28 2.01 1.73 6.69 7.08

12 4 7.54 8.09 8.43 2.08 1.79 7.58 8.12
Using experimental design and considering the noise condi-
tions mentioned above, the GR&R study adopted p¼12 parts, o¼3
operators, and r¼4 replicates. Table 1 contains the data for the
GR&R study. The device evaluated in this study was a portable
roughness meter, shown in Fig. 3, set to a cut-off length of 0.25.

4.1. ANOVA

A strategy commonly used in quality improvement projects is
to prioritize the quality characteristic. For this study the para-
meter Ra, widely used in most manufacturing processes, was
selected to evaluate the measurement system. To run the uni-
variate GR&R study, a two-way analysis of variance with interac-
tion, Eq. (1), was adjusted to Ra. The interaction term was not
significant for a significance level of 0.05, so the model could be
adjusted to a reduced model without the interaction term. Then,
variances in Eq. (2) were estimated and their square roots appear
in Table 2 as ŝP , ŝMS and ŝT . Eqs. (3) and (4) were used to estimate
the %R&R and ndc indexes. The index %R&R¼18.62% classifies the
j¼3

Rt Rq Ra Rz Ry Rt Rq Ra

9.25 1.67 1.38 6.39 8.38 9.25 1.67 1.38

9.43 1.84 1.53 7.60 9.18 9.41 1.84 1.53

8.46 1.55 1.27 6.44 7.69 7.83 1.50 1.23

8.94 2.10 1.84 7.54 9.03 9.03 2.10 1.84

8.02 2.27 2.05 7.26 7.84 8.02 2.27 2.05

7.95 2.37 2.14 7.32 7.94 7.96 2.37 2.14

10.55 2.39 1.92 9.22 10.54 10.54 2.38 1.91

4.32 0.96 0.77 3.88 4.32 4.32 0.97 0.78

5.02 1.02 0.81 4.24 4.89 5.05 0.99 0.79

9.16 2.10 1.76 7.79 8.66 9.11 2.10 1.76

7.53 2.00 1.72 6.83 7.46 7.54 2.00 1.72

8.24 2.21 1.95 7.46 8.22 8.22 2.21 1.94

7.78 1.80 1.52 6.63 7.58 7.74 1.80 1.52

9.55 1.47 1.17 5.96 9.30 9.30 1.46 1.17

8.82 1.56 1.19 6.86 8.13 8.77 1.61 1.24

10.26 2.05 1.76 8.05 9.70 10.22 2.05 1.76

7.61 2.29 2.08 7.01 7.42 7.63 2.29 2.08

7.92 2.40 2.18 7.34 7.81 7.96 2.38 2.16

9.63 2.34 1.89 8.67 9.64 9.85 2.28 1.82

4.58 1.02 0.83 3.91 4.27 4.54 1.00 0.81

4.51 0.99 0.80 3.90 4.24 4.49 0.99 0.80

9.93 2.07 1.73 7.78 9.23 9.91 2.07 1.72

7.39 2.01 1.74 6.64 7.19 7.30 2.01 1.73

8.47 2.17 1.89 7.45 8.21 8.25 2.17 1.88

7.10 1.51 1.26 6.05 7.00 7.12 1.51 1.26

7.51 1.39 1.12 5.67 7.56 7.56 1.37 1.10

9.18 1.33 1.03 6.41 8.94 8.94 1.70 1.43

10.07 2.03 1.73 7.66 9.86 9.86 2.02 1.72

7.65 2.26 2.04 7.09 7.46 7.68 2.26 2.03

7.86 2.37 2.16 7.15 7.76 7.76 2.37 2.16

10.46 2.44 1.97 9.53 10.36 10.40 2.44 1.96

4.06 0.96 0.78 3.75 3.92 4.00 0.95 0.77

4.03 1.01 0.80 3.78 3.95 4.03 0.99 0.79

11.47 2.11 1.72 8.71 10.22 11.82 2.13 1.72

7.23 2.03 1.75 6.76 7.15 7.21 2.03 1.75

8.40 2.23 1.94 7.70 8.02 8.40 2.23 1.94

7.47 1.63 1.34 6.34 7.49 7.49 1.64 1.35

9.83 1.86 1.49 7.93 9.70 10.16 1.86 1.49

8.92 1.76 1.42 6.94 8.60 8.85 1.75 1.42

9.49 2.18 1.89 8.03 9.49 9.56 2.19 1.90

7.38 2.28 2.07 6.98 7.29 7.40 2.28 2.07

7.75 2.35 2.12 7.25 7.41 7.70 2.36 2.13

8.76 2.18 1.78 8.10 8.54 8.69 2.17 1.77

5.14 1.06 0.85 4.07 5.14 5.21 1.03 0.83

6.42 1.17 0.94 4.78 6.73 6.78 1.18 0.94

9.03 1.99 1.68 7.40 8.76 9.06 1.99 1.68

7.23 2.00 1.72 6.68 7.07 7.20 1.99 1.71

8.29 2.09 1.80 7.56 8.17 8.29 2.11 1.81



Table 2
Roughness meter classification through ANOVA, PCA, and WPC methods.

ANOVA PCA

Ra Ry Rz Rq Rt PC1 PC2 WPC

ŝP 0.443 1.689 1.431 0.469 1.744 2.0907 0.7792 9.0054

ŝMS 0.084 0.544 0.407 0.095 0.634 0.5302 0.2808 2.3764

ŝT 0.451 1.774 1.488 0.479 1.856 2.1569 0.8282 9.3137

%R&R 18.62% 30.66% 27.37% 19.79% 34.14% 24.58% 33.91% 25.52%

ndc 7 4 4 6 3 5 3 5

Table 3
Correlation structure between roughness parameters.

Rz Ry Rt Rq

Ry 0.920a – – –

0.000b – – –

Rt 0.908 0.988 – –

0.000 0.000 – –

Rq 0.906 0.734 0.708 –

0.000 0.000 0.000 –

Ra 0.839 0.652 0.623 0.989

0.000 0.000 0.000 0.000

a Pearson correlation.
b p-value.

Fig. 3. Mitutoyo portable roughness meter model Surftest SJ-201P.

R.S. Peruchi et al. / Int. J. Production Economics 144 (2013) 301–315 307
measurement system as marginal, having potential for improve-
ment. The index ndc¼7, being more than 5, classifies the
measuring system as acceptable.

However, the prioritization of the CTQs is not satisfactory in
evaluating the surface roughness of a machined part. The para-
meter Ra alone is insufficient for describing a surface completely.
Its disadvantage is evident when a non-typical peak or valley is
detected on the surface. Nevertheless, it does not interfere in the
calculation of the average value, keeping the defect nearly con-
cealed. To evaluate Ra, the analyst may be interested in a
complementary parameter. The parameter Ry has wide accep-
tance and can be a good choice because it provides information
about the deterioration of the vertical surface part.

To run the univariate GR&R study, a two-way analysis of
variance with interaction, Eq. (1), was adjusted to Ry. The inter-
action term was not significant for a significance level of 0.05, so
the model could be adjusted to a reduced model without the
interaction term. Then, variances in Eq. (2) were estimated and
their square roots appear in Table 2 as ŝP , ŝMS and ŝT . Finally, Eqs.
(3) and (4) were used to estimate the %R&R and ndc indexes. The
index %R&R¼30.66% classified the measurement system as unac-
ceptable. The index ndc¼4 states that the measurement system
was able to identify only four distinct categories of parts.
Individually, the parameter Ry also fails to provide sufficient
information about the surface. Indeed, various forms of surface
roughness may have the same value Ry. When Ra and Ry (as a
supplement to Ra) are evaluated using univariate statistical
techniques, the analyst cannot verify the measurement system’s
acceptability. Since the same measurement device measures all
roughness parameters, a more detailed analysis was able to show
that these responses were highly correlated (see Table 3). There-
fore, assessing the measurement system considering independent
responses may not be the most appropriate method. It was
decided to display the parameters of surface roughness in a
vector and use a multivariate approach to evaluate the measure-
ment system.
4.2. MANOVA

Before beginning the measurement system analysis using
MANOVA, the data in Table 1 were standardized by subtracting
the mean and dividing by the standard deviation for each
observation. The standardization of data is important not only
when the variables are in different units but also when the
variables are at different scales. Thus, to perform this multivariate
GR&R study, the analyst adjusted the standardized data of Table 1
using a two-way multivariate analysis of variance according to
the model in Eq. (5). The interaction term was not significant for a
significance level of 0.05. Thus, the model could be adjusted to a
reduced model without the interaction term. Then, the matrices
of the mean squares for the factor part, the factor operator, and
the error term were estimated. The matrices are

MSP¼

12:5745 7:5039 10:1185 12:3004

7:5039 11:1506 10:5769 8:2761

10:1185 10:5769 11:8887 10:7970
12:3004

7:2875

8:2761

11:2526

10:7970

10:5188

12:2838

8:0766

7:2875

11:2526

10:5188
8:0766

11:4015

0
BBBBBB@

1
CCCCCCA
ð25Þ

MSO¼

0:0070 �0:0079 0:0090 0:0092

�0:0079 0:0088 �0:0100 �0:0104

0:0090 �0:0100 0:0117 0:0116
0:0092

0:0063

�0:0104

�0:0072

0:0116

0:0069

0:0123

0:0092

0:0063

�0:0072

0:0069
0:0092

0:0109

0
BBBBBB@

1
CCCCCCA
ð26Þ

MSE¼

0:0359 0:0479 0:0447 0:0424 0:0447

0:0479 0:1564 0:1017 0:0715 0:1353

0:0447 0:1017 0:0939 0:0664 0:0910

0:0424 0:0715 0:0664 0:0604 0:0658

0:0447 0:1353 0:0910 0:0658 0:1351

0
BBBBBB@

1
CCCCCCA

ð27Þ

The variance-covariance matrices for the part, measurement
system, and the total variation were then estimated. The result
is shown here

R̂P ¼

1:0448 0:62133 0:83948 1:02150 0:60357

0:62133 0:91618 0:87293 0:68372 0:92643

0:83948 0:87293 0:98290 0:89422 0:86898

1:02150 0:68372 0:89422 1:01861 0:66757

0:60357 0:92643 0:86898 0:66757 0:93886

0
BBBBBB@

1
CCCCCCA
ð28Þ
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R̂SM ¼

0:03530 0:04674 0:04397 0:04170

0:04674 0:15328 0:09938 0:06981

0:04397 0:09938 0:9214 0:06526
0:04170

0:04387

0:06981

0:13238

0:06526

0:08922

0:05941

0:06464

0:04387

0:13238

0:08922
0:06464

0:13251

0
BBBBBB@

1
CCCCCCA
ð29Þ

R̂T ¼

1:08018 0:66808 0:88345 1:06320

0:66808 1:06947 0:97231 0:75353

0:88345 0:97231 1:07505 0:95948
1:06320

0:64744

0:75353

1:05881

0:95948

0:95820

1:07803

0:73221

0:64744

1:05881

0:95820
0:73221

1:07137

0
BBBBBB@

1
CCCCCCA
ð30Þ

Finally, to evaluate the multivariate indexes of the measuring
system’s acceptability, the eigenvalues of the matrices, R̂P, R̂MS

and R̂T, were computed (Table 4). Using Eq. (7) the index
%R&Rm¼38.72% was obtained. This represents one of the multi-
variate criteria used to assess the measurement system for the
five CTQs Ra, Ry, Rz, Rq, and Rt. The fact that %R&Rm430% classifies
the measurement system as unacceptable. Eq. (8) was used to
calculate the multivariate index, ndcm¼3. That is, the measure-
ment system could distinguish only three categories of parts.

4.3. PCA

First, through the PCA method, an analysis was made of the
principal components of responses Ra, Ry, Rz, Rq, and Rt using the
correlation matrix of the data. The eigenvalues and eigenvectors
obtained from the correlation matrix are presented in Table 5.
Eqs. (9) and (10) were used to come up with the principal
component scores. Wang and Chien (2010) evaluated only prin-
cipal components with a cumulative percentage of explanation of
at least 95% for the original variables. As the first principal
component (PC1) represents only 86.2% of the variability in the
study, the scores of the second principal component (PC2) were
also analyzed. Taken together their sum accounted for 99.0% of
the variability of the studied phenomenon. To perform a
Table 4

Eigenvalues of matrices R̂P , R̂MS , and R̂T are obtained by MANOVA.

l1 l2 l3 l4 l5

Part 4.381 0.607 0.046 0.004 0.003

Measurement system 0.298 0.064 0.012 0.005 0.000

Total variation 4.655 0.685 0.066 0.012 0.003

Table 5
Principal component analysis for roughness parameters.

Principal components

PC1 PC2 PC3 PC4 PC5

Eigenvalue 4.312 0.638 0.037 0.011 0.002

Proportion 0.862 0.128 0.007 0.002 0.000

Cumulative 0.862 0.990 0.997 1.000 1.000

Responses Eigenvectors

Rz 0.475 0.052 �0.839 �0.008 0.259

Ry 0.446 0.457 0.282 �0.716 �0.018

Rt 0.439 0.501 0.263 0.697 �0.031

Rq 0.449 �0.448 �0.012 0.009 �0.773

Ra 0.425 �0.581 0.383 0.030 0.578
multivariate GR&R study, the PC1 and PC2 scores were adjusted
by using two-way analysis of variance, according to the model in
Eq. (11).

The study calculated the variances of parts, repeatability,
reproducibility (operators), measurement system, and total
variance. Table 2 presents the square roots of these variances
and, with Eqs. (3) and (4), the %R&Rm and ndcm indexes for PC1

and PC2. For PC1 and PC2, the indexes (%R&Rm, ndcm) were
estimated at (24.58%, 5) and (33.91%, 3). In this case, the indexes
estimated for PC1 classified the measurement system as marginal.
An analysis of PC2 interpreted things differently, classifying the
measurement system as unacceptable.

4.4. WPC

Steps 1 and 2: assess and verify whether there are significant

correlations between CTQs.
Table 3 shows that all correlation coefficients are significant,
so, to assess this measurement system, a multivariate GR&R
study must be conducted (proceed to step 3.1).
Step 3.1: create WPC vector

As with the PCA method, an analysis was initially made of the
principal components of the Ra, Ry, Rz, Rq, and Rt responses,
using the correlation matrix of the data. The eigenvalues and
eigenvectors obtained from the correlation matrix are the
same as those presented in Table 5. WPC was obtained by
weighting the principal component scores using Eq. (13).
Step 4: estimate variance components

WPC was adjusted for a two-way analysis of variance, accord-
ing to the model in Eq. (14). The vector WPC represents the
original set of responses Ra, Ry, Rz, Rq, and Rt. The interaction
term was not significant for a significance level of 0.05. Thus,
the model can be adjusted to Eq. (20). Using Eqs. (17)–(19),
(21) and (22), the study calculated variances for parts, repeat-
ability, reproducibility (operators), measurement system, and
total variance.
Step 5: estimate multivariate indexes for assessing the measure-

ment system

Table 2 shows the square roots of these variances and, with
Eqs. (23) and (24), the %R&Rm and ndcm indexes. %R&Rm¼

25.52% classifies the measurement system as marginal. The
index ndc¼5 states that the measurement system was able to
identify five distinct categories of parts.

In summary, this numerical example has shown that ANOVA
and PCA methods were unable to provide a single evaluation for
the measurement process; the analyst was not capable of classi-
fying the measurement system. WPC and MANOVA methods
provided a single evaluation of the measurement system; their
estimates, however, of the %R&Rm index were divergent. Due to
these findings, a simulation study was conducted to examine
several scenarios involving measurement systems (unacceptable,
marginal, and acceptable) and correlation structures (very low,
low, medium, high, and very high) between CTQs.
5. Simulation

5.1. Detailing the simulation study

The numerical example given above analyzes only a single
case where the measurement system evaluated by each CTQ
pertained to either a marginal or an unacceptable region
and the correlation structure of variables was able to explain
86.2% to the first eigenvalue. The purpose of this simulation is to



Table 6
Mean vectors and variance-covariance matrices used to generate simulated data with different correlations and measurement systems (MS).

Scenarios Mean vectors Variance-covariance matrix

P1O1 P2O1 P3O1 P4O1 P5O1 P1O2 P2O2 P3O2 P4O2 P5O2

1 4.00 8.00 6.00 10.00 5.00 4.10 8.10 5.90 9.90 4.90 1:10 1:27 1:39 1:50

1:27 1:50 1:63 1:76

1:39 1:63 1:80 1:92

1:50 1:76 1:92 2:10

2
6664

3
7775

Very Low corr. 8.00 6.00 13.00 9.00 11.00 7.90 6.10 12.90 9.10 10.90

Unacceptable MS 9.00 10.00 13.00 16.00 7.00 9.10 10.10 12.90 15.90 7.10

7.00 11.00 5.00 10.00 15.00 7.10 10.90 5.10 10.10 15.10

2 4.00 8.00 6.00 10.00 5.00 4.10 8.10 5.90 9.90 4.90 1:10 1:27 1:39 1:50

1:27 1:50 1:63 1:76

1:39 1:63 1:80 1:92

1:50 1:76 1:92 2:10

2
6664

3
7775

Low corr. 8.00 7.00 9.00 12.00 11.00 7.90 6.90 9.10 12.10 10.90

Unacceptable MS 9.00 10.00 7.00 13.00 15.00 9.10 10.10 6.90 13.10 14.90

7.00 13.00 11.00 14.00 17.00 7.10 13.10 11.10 13.90 16.90

3 9.00 7.00 5.00 12.00 10.00 9.01 6.99 5.01 12.01 9.99 1:10 1:27 1:39 1:50

1:27 1:50 1:63 1:76

1:39 1:63 1:80 1:92

1:50 1:76 1:92 2:10

2
6664

3
7775

Medium corr. 8.00 7.00 9.00 12.00 11.00 7.99 6.99 9.01 12.01 10.99

Unacceptable MS 9.00 10.00 7.00 13.00 15.00 9.01 10.01 6.99 13.01 14.99

7.00 13.00 9.00 17.00 14.00 7.01 13.01 8.99 16.99 14.01

4 6.00 4.00 8.00 10.00 12.00 6.01 4.01 7.99 9.99 12.01 1:50 1:58 1:63 1:67

1:58 1:70 1:73 1:78

1:63 1:73 1:80 1:83

1:67 1:78 1:83 1:90

2
6664

3
7775

High corr. 3.00 6.00 9.00 11.00 15.00 3.01 6.01 9.01 10.99 14.99

Unacceptable MS 6.00 8.00 11.00 15.00 13.00 6.01 8.01 11.10 15.10 13.10

8.00 10.00 12.00 16.00 14.00 7.99 10.01 12.01 16.01 14.01

5 4.00 6.00 8.00 10.00 12.00 4.01 6.01 7.99 9.99 12.01 1:10 1:27 1:39 1:50

1:27 1:50 1:63 1:76

1:39 1:63 1:80 1:92

1:50 1:76 1:92 2:10

2
6664

3
7775

Very high corr. 5.00 7.00 9.00 11.00 13.00 5.01 7.01 9.01 10.99 12.99

Unacceptable MS 6.00 8.00 10.00 12.00 14.00 6.01 8.01 9.99 11.99 13.99

8.00 10.00 12.00 14.00 16.00 7.99 10.01 12.01 14.01 15.99

6 4.00 8.00 6.00 10.00 5.00 4.10 8.10 5.90 9.90 4.90 0:22 0:25 0:28 0:30

0:25 0:30 0:33 0:35

0:28 0:33 0:36 0:38

0:30 0:35 0:38 0:42

2
6664

3
7775

Very Low corr. 8.00 6.00 13.00 9.00 11.00 7.90 6.10 12.90 9.10 10.90

Marginal MS 5.00 8.00 9.00 14.00 12.00 5.10 8.10 8.90 13.90 12.10

7.00 13.00 5.00 10.00 17.00 7.10 13.10 5.10 10.10 16.90

7 6.00 8.00 4.00 11.00 10.00 6.10 8.10 3.90 10.90 9.90 0:22 0:25 0:28 0:30

0:25 0:30 0:33 0:35

0:28 0:33 0:36 0:38

0:30 0:35 0:38 0:42

2
6664

3
7775

Low corr. 8.00 7.00 9.00 12.00 11.00 7.90 6.90 9.10 12.10 10.90

Marginal MS 7.00 13.00 10.00 11.00 15.00 7.10 13.10 9.90 11.10 14.90

9.00 11.00 14.00 13.00 17.00 9.10 10.90 14.10 12.90 16.90

8 9.00 7.00 5.00 12.00 10.00 9.01 6.99 5.01 12.01 9.99 0:22 0:25 0:28 0:30

0:25 0:30 0:33 0:35

0:28 0:33 0:36 0:38

0:30 0:35 0:38 0:42

2
6664

3
7775

Medium corr 8.00 7.00 9.00 12.00 11.00 7.99 6.99 9.01 12.01 10.99

Marginal MS 9.00 10.00 7.00 13.00 15.00 9.01 10.01 6.99 13.01 14.99

7.00 13.00 9.00 17.00 14.00 7.01 13.01 8.99 16.99 14.01

9 6.00 4.00 8.00 10.00 12.00 6.01 4.01 7.99 9.99 12.01 0:22 0:25 0:28 0:30

0:25 0:30 0:33 0:35

0:28 0:33 0:36 0:38

0:30 0:35 0:38 0:42

2
6664

3
7775

High corr 3.00 6.00 9.00 11.00 15.00 3.01 6.01 9.01 10.99 14.99

Marginal MS 6.00 8.00 11.00 15.00 13.00 6.01 8.01 11.10 15.10 13.10

8.00 10.00 12.00 16.00 14.00 7.99 10.01 12.01 16.01 14.01

10 4.00 6.00 8.00 10.00 12.00 4.01 6.01 7.99 9.99 12.01 0:22 0:25 0:28 0:30

0:25 0:30 0:33 0:35

0:28 0:33 0:36 0:38

0:30 0:35 0:38 0:42

2
6664

3
7775

Very high cor 5.00 7.00 9.00 11.00 13.00 5.01 7.01 9.01 10.99 12.99

Marginal MS 6.00 8.00 10.00 12.00 14.00 6.01 8.01 9.99 11.99 13.99

8.00 10.00 12.00 14.00 16.00 7.99 10.01 12.01 14.01 15.99

11 4.00 8.00 6.00 10.00 5.00 4.10 8.10 5.90 9.90 4.90 0:04 0:04 0:05 0:05

0:04 0:05 0:05 0:06

0:05 0:06 0:06 0:06

0:05 0:06 0:06 0:07

2
6664

3
7775

Very low corr 8.00 6.00 13.00 9.00 11.00 7.90 6.10 12.90 9.10 10.90

Acceptable MS 5.00 8.00 9.00 14.00 12.00 5.10 8.10 8.90 13.90 12.10

7.00 13.00 5.00 10.00 17.00 7.10 13.10 5.10 10.10 16.90

12 6.00 8.00 4.00 11.00 10.00 6.01 8.01 3.99 10.99 9.99 0:04 0:04 0:05 0:05

0:04 0:05 0:05 0:06

0:05 0:06 0:06 0:06

0:05 0:06 0:06 0:07

2
6664

3
7775

Low corr 7.00 5.00 9.00 13.00 11.00 6.99 4.99 9.01 13.01 10.99

Acceptable MS 7.00 13.00 10.00 11.00 15.00 7.01 13.01 9.99 11.01 14.99

6.00 10.00 14.00 12.00 17.00 6.01 9.99 14.01 12.01 16.99

13 9.00 7.00 5.00 12.00 10.00 9.01 6.99 5.01 12.01 9.99 0:04 0:04 0:05 0:05

0:04 0:05 0:05 0:06

0:05 0:06 0:06 0:06

0:05 0:06 0:06 0:07

2
6664

3
7775

Medium corr 8.00 7.00 9.00 12.00 11.00 7.99 6.99 9.01 12.01 10.99

Acceptable MS 9.00 10.00 7.00 13.00 15.00 9.01 10.01 6.99 13.01 14.99

7.00 13.00 9.00 17.00 14.00 7.01 13.01 8.99 16.99 14.01

14 6.00 4.00 8.00 10.00 12.00 6.01 4.01 7.99 9.99 12.01 0:04 0:04 0:05 0:05

0:04 0:05 0:05 0:06

0:05 0:06 0:06 0:06

0:05 0:06 0:06 0:07

2
6664

3
7775

High corr. 3.00 6.00 9.00 11.00 15.00 3.01 6.01 9.01 10.99 14.99

Acceptable MS 6.00 8.00 11.00 15.00 13.00 6.01 8.01 11.10 15.10 13.10

8.00 10.00 12.00 16.00 14.00 7.99 10.01 12.01 16.01 14.01

15 4.00 6.00 8.00 10.00 12.00 4.01 6.01 7.99 9.99 12.01 0:04 0:04 0:05 0:05

0:04 0:05 0:05 0:06

0:05 0:06 0:06 0:06

0:05 0:06 0:06 0:07

2
6664

3
7775

Very high corr. 5.00 7.00 9.00 11.00 13.00 5.01 7.01 9.01 10.99 12.99

Acceptable MS 6.00 8.00 10.00 12.00 14.00 6.01 8.01 9.99 11.99 13.99

8.00 10.00 12.00 14.00 16.00 7.99 10.01 12.01 14.01 15.99
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evaluate other possible situations in a multivariate analysis of a
measurement system and to compare the results achieved, primarily,
through multivariate methods. Simulated data is generated for
measurement systems that are unacceptable (%R&Rm430%), mar-
ginal (10%o%R&Rmo30%) and acceptable (%R&Rmo10%), as well as
correlations that are very low (%PC1r65%), low (65%o%PC1r75%),
medium (75%o%PC1r85%), high (85%o%PC1r95%), and very high
(%PC1495%). There are a total of 15 scenarios and 1800 simulated
measurements. %PC1 is the result obtained from l1=

Pq
i ¼ 1 li. Simu-

lated data were generated from the information in Table 6, according
to the ssame amount of CTQs, parts, operators and replicates in
Majeske (2008), q¼4, p¼5, o¼2, and r¼3. The data for the 15
simulated scenarios are shown in the appendix, in Tables A1–A5.

5.2. Criterion of methods’ assessment

The numerical example showed that the ANOVA method
might not be satisfactory when multiple CTQs are evaluated with
significant correlations. Therefore, this simulation study will focus
only on the comparison of multivariate methods. The %R&Rm and
%R&R indexes were calculated to compare the methods. For each
scenario, this study tried to obtain close %R&R index values for
CTQ1, CTQ2, CTQ3, and CTQ4. Thus, the indexes obtained by
multivariate methods are expected to be close to those obtained
by the ANOVA method. The criterion used in this work to
determine if the estimated multivariate index, %R&Rm, is correct
and is based on confidence intervals for means calculated from
results obtained by the ANOVA method. The lower (LCL) and
upper (UCL) limits of the confidence intervals are calculated by
the following equations:

LCL¼ CTQ�tN�1,a=2
sffiffiffiffi
N
p ð31Þ

UCL¼ CTQ þtN�1,a=2
sffiffiffiffi
N
p ð32Þ

where CTQ is the mean of %R&R between CTQ1, CTQ2, CTQ3 and
CTQ4; s is the standard deviation; N is the sample size and, and
tN�1,a is the ð1�aÞ100th percentile of a t distribution with (N�1)
degrees of freedom. Note that it would make little sense to
evaluate situations where CTQs determine distinct classifications
of the measurement system. For instance, CTQ1 and CTQ2 classify
the measurement system as unacceptable and, on the other hand,
CTQ3 and CTQ4 classify the measurement system as acceptable. In
Table 7
Results for calculations of the %R&R index, mean and 95% confidence interval.

Scenario Univariate (%R&R)

S MS Correlation CTQ1 CTQ2

S1 Unacceptable Very low 49.9 39.3

S2 Low 42.2 55.5

S3 Medium 40.8 52.4

S4 High 45.3 33.2

S5 Very high 31.1 34.9

S6 Marginal Very low 15.8 14.1

S7 Low 18.6 27.2

S8 Medium 15.5 23.7

S9 High 13.2 10.3

S10 Very high 15.2 19.0

S11 Acceptable Very low 8.4 6.3

S12 Low 5.6 4.6

S13 Medium 6.2 9.6

S14 High 5.7 4.5

S15 Very high 6.5 7.6
such situations, the confidence interval would be wider, and thus,
%R&Rm indexe would be easily estimated inside the limits.
5.3. Result analysis

Table 7 presents the results of calculations of the %R&R index
as well as the mean value and the 95% confidence interval,
obtained by the ANOVA method. Table 8 shows the calculation
results of the mean value, 95% confidence interval and %R&Rm

index, obtained by the PCA, MANOVA, and WPC methods. The
analysis and comparison will be performed by the intra- and
inter-methods. The intra-method analysis will provide an over-
view of the methods’ performance to estimate the %R&Rm index.
The inter-method analysis will seek to justify the methods’
deviations of estimates of the %R&Rm index from the confidence
intervals.

The intra-method analysis verified that, in the estimation of
the %R&Rm index, the WPC was more robust than MANOVA and
PCA. The MANOVA method was able to estimate the multivariate
index within the confidence interval only in scenarios S9, S11, and
S14. Wang and Chien (2010) evaluated only the principal compo-
nents with a cumulative percentage of explanation of at least 95%
for the original variables. Thus, the PCA method was capable of
estimating the multivariate index within the confidence interval
only in scenarios S5, S10, S11, and S15. As seen in Table 8, the
WPC method estimated % R&Rm index within the confidence
interval for all 15 scenarios.

For the inter-method analysis by PCA, Table 8 presents the
analysis of measurement systems simulated for the four principal
components. The values in parentheses show the explanation
percentage of variability of the CTQs for each principal compo-
nent. What should be evaluated are the scores of principal
components that represent at least 95% of cumulative variability
for CTQs. Therefore, scenarios with correlation structure
�
 Very low, low and medium: PC1, PC2, and PC3 were analyzed.

�
 High: PC1 and PC2 were analyzed.

�
 Very high: only PC1 was analyzed.

In S5, S10 and S15, only PC1 was analyzed, the results showed
that PCA was capable of estimating %R&Rm within the confidence
interval. For the other scenarios, PC1 could not adequately explain
the variability of the CTQs. Thus, when other principal
Mean CI

CTQ3 CTQ4 Mean LCL UCL

38.3 34.1 40.42 29.69 51.14

44.3 39.8 45.44 34.42 56.47

42.6 36.9 43.18 32.63 53.72

41.2 47.8 41.86 31.70 52.03

37.8 41.1 36.21 29.45 42.97

13.7 10.2 13.48 9.75 17.21

21.3 24.1 22.82 16.95 28.69

17.0 14.6 17.69 11.16 24.21

13.6 16.9 13.50 9.19 17.80

19.7 20.9 18.70 14.80 22.59

4.9 5.3 6.22 3.67 8.77

6.7 5.4 5.54 4.15 6.92

6.6 5.9 7.07 4.37 9.76

5.9 7.3 5.84 4.00 7.69

8.6 9.2 7.95 6.07 9.83



Table 8
Results for calculations of the mean, 95% confidence interval and %R&Rm index.

MEAN CI MULTIVARIATE (%R&Rm)

S Mean LCL UCL PC1 PC2 PC3 PC4 MANOVA WPC

S1 40.42 29.69 51.14 52.24a(55.8b) 19.55 (29.1) 15.32 (14.1) 42.08 (1.0) 10.78 39.71
S2 45.44 34.42 56.47 53.84 (70.7) 10.48 (17.5) 20.91 (8.1) 19.32 (3.7) 13.30 52.84
S3 43.18 32.63 53.72 47.79 (79.4) 11.21 (9.4) 17.65 (7.5) 9.64 (3.7) 11.32 47.87
S4 41.86 31.70 52.03 44.38 (88.3) 8.94 (8.4) 29.62 (3.1) 75.92 (0.2) 28.15 44.03
S5 36.21 29.45 42.97 36.10 (99.7) 97.05 (0.2) 100.00 (0.0) 100.00 (0.0) 64.09 36.11
S6 13.48 9.75 17.21 18.46 (44.9) 6.92 (29.9) 2.79 (23.5) 32.43 (1.7) 4.97 12.65
S7 22.82 16.95 28.69 24.97 (66.2) 2.77 (17.8) 8.37 (15.9) 46.89 (0.2) 10.04 26.98
S8 17.69 11.16 24.21 19.71 (79.8) 6.01 (9.2) 11.78 (7.5) 7.19 (3.5) 5.40 19.86
S9 13.50 9.19 17.80 14.17 (89.8) 6.01 (7.6) 9.99 (2.5) 54.07 (0.1) 14.31 14.00
S10 18.70 14.80 22.59 18.63 (99.9) 93.87 (0.1) 100.00 (0.0) 100.00 (0.0) 47.23 18.63
S11 6.22 3.67 8.77 6.41 (45.5) 6.39 (35.9) 4.59 (17.4) 15.83 (1.1) 4.08 4.10
S12 5.54 4.15 6.92 6.69 (67.6) 1.15 (18.3) 2.25 (13.8) 5.33 (0.4) 2.01 6.89
S13 7.07 4.37 9.76 7.87 (79.7) 1.95 (8.9) 5.75 (7.8) 3.08 (3.6) 2.28 8.04
S14 5.84 4.00 7.69 5.99 (90.3) 3.34 (7.1) 3.96 (2.6) 33.24 (0.1) 7.22 5.91
S15 7.95 6.07 9.83 7.92 (100.0) 96.68 (0.0) 100.00 (0.0) 100.00 (0.0) 39.35 7.92

a %R&R.
b li=

Pq
j ¼ 1 lj i¼ 1,2,. . .,q

Table 9
%R&Rm index for the inter-method analysis by MANOVA.

S Mean LCL UCL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lMS1=lT1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lMS2=lT2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lMS3=lT3

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lMS4=lT4

q Q4
i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lMS1=lTi

q� �ð1=4Þ

S1 40.42 29.69 51.14 49.07a(61.2b) 3.29 (27.4) 5.13 (10.5) 16.34 (0.9) 10.78

S2 45.44 34.42 56.47 45.90 (74.6) 9.35 (13.9) 8.32 (7.7) 8.76 (3.9) 13.30

S3 43.18 32.63 53.72 45.97 (80.4) 5.81 (10.8) 7.80 (5.2) 7.87 (3.6) 11.32

S4 41.86 31.70 52.03 43.30 (87.3) 52.70 (8.6) 14.66 (3.1) 18.78 (1.1) 28.15

S5 36.21 29.45 42.97 37.75 (99.8) 51.77 (0.2) 98.97 (0.0) 92.13 (0.0) 64.09

S6 13.48 9.75 17.21 15.94 (53.4) 2.14 (29.0) 2.40 (16.3) 7.43 (1.3) 4.97

S7 22.82 16.95 28.69 27.39 (67.7) 4.44 (18.3) 3.37 (13.9) 24.73 (0.2) 10.04

S8 17.69 11.16 24.21 18.15 (81.2) 3.00 (11.0) 4.45 (4.6) 3.51 (3.2) 5.40

S9 13.50 9.19 17.80 14.50 (90.4) 14.24 (6.9) 10.03 (2.6) 20.27 (0.1) 14.31
S10 18.70 14.80 22.59 16.92 (99.9) 56.75 (0.0) 70.15 (0.0) 73.86 (0.0) 47.23

S11 6.22 3.67 8.77 7.27 (50.4) 2.80 (34.5) 2.21 (34.5) 6.14 (14.2) 4.08
S12 5.54 4.15 6.92 6.23 (71.5) 0.95 (15.5) 0.73 (12.7) 3.80 (0.3) 2.01

S13 7.07 4.37 9.76 7.11 (81.5) 1.34 (10.6) 1.69 (4.6) 1.68 (3.3) 2.28

S14 5.84 4.00 7.69 6.59 (90.8) 7.39 (6.4) 4.10 (2.8) 13.63 (0.1) 7.22
S15 7.95 6.07 9.83 7.78 (100.0) 38.19 (0.0) 98.44 (0.0) 82.04 (0.0) 39.35

a %R&R.
b li=

Pq
j ¼ 1 lTj i¼ 1,2,. . .,q.
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components were analyzed, the %R&Rm index was estimated
outside the confidence interval (except for S11). In short, when
the correlation structure between the CTQs requires that other
principal components be analyzed, in addition to PC1, the PCA
method may fail (see Table 8).

For the inter-method analysis by MANOVA, Table 9 shows how
the %R&Rm index was estimated for the 15 simulated scenarios.
This verifies that this method is capable of estimating the multi-
variate index within of the confidence interval only in S9, S11, and
S14. This index was obtained by MANOVA using the geometric

mean of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lMS=lT

p
according to the amount of quality character-

istics. This simulation study dealt with four characteristics. Thus,

four eigenvalues of the R̂MS and R̂T matrices were extracted. If the

individual ratio
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lMS=lT

p
for each pair of eigenvalues, 1, 2, 3, and

4, in R̂MS and R̂T, provide different interpretations, the %R&Rm

index estimated by MANOVA may not represent well the perfor-
mance of the measurement system. Indeed, a geometric mean
provides the same degree of importance in the analysis of each
pair of eigenvalues. Nevertheless, it is known that the first
eigenvalues wield a greater percentage of explaining the mea-
sured phenomenon than do the last eigenvalues. Therefore, it is
confirmed that some form of weighting is needed for the calcula-
tion of this index.

In the inter-method analysis by WPC, Table 8 shows that the
%R&Rm index was estimated within the confidence interval for the
15 simulated scenarios. WPC was more robust than PCA and
MANOVA because it overcame some shortcomings of these
methods. For PCA, when PC1 is insufficient to explain all the
variability of CTQs, other principal components can provide
evaluations for the measurement system outside the confidence
interval. MANOVA provides a single interpretation for the mea-
surement system; however, the strategy of using geometric mean
was not satisfactory. In WPC, the strategy of weighting the scores
of principal components by their eigenvalues proved to be
sufficient to correct the aforementioned shortcomings. Moreover,
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the simulation study showed that in using the WPC method the
higher correlations between the CTQs, the closer to the mean
value will be the estimates of %R&Rm.
6. Conclusions

This article has addressed the multivariate analysis of mea-
surement systems through studies of such systems’ repeatability
and reproducibility. The article’s main contribution is its proposal
of a new method of multivariate analysis of measurement
systems by weighting the principal components. To prove the
efficiency of the method, this study evaluated measurements of
the roughness parameters, obtained from AISI 12L14 steel turning
machined with carbide tools. Additionally, simulated data were
generated with different correlation structures for measurement
systems considered acceptable, marginal, and unacceptable.
The results obtained by the WPC method were compared to
those obtained by the univariate and multivariate methods (PCA
and MANOVA). Statistical analysis provided the following
conclusions:
1.
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The numerical example showed that univariate analysis could
not be satisfactory when correlated characteristics are mea-
sured with the same measuring instrument. Multivariate
statistical techniques should be used so that a single classifica-
tion represents the original set of variables.
2.
 As in the univariate method, through PCA, the individual
analysis of the principal components may provide different
interpretations. Therefore, PCA should be used only in cases
where the correlations between the responses are very high. In
le A1
y low correlation structure (%PC1r65%).

Unacceptable MS Marginal MS

j k CTQ1 CTQ2 CTQ3 CTQ4 CTQ1 CTQ2

1 1 5.538 9.709 10.890 9.219 4.075 8.22

1 2 3.128 6.789 7.708 5.679 3.193 7.15

1 3 2.876 6.555 7.363 5.490 3.763 7.82

1 1 5.837 3.170 7.206 8.053 8.214 6.28

1 2 7.640 5.731 10.003 10.862 7.321 5.21

1 3 8.571 6.913 10.870 11.712 8.567 6.46

1 1 5.413 12.160 12.104 4.125 7.091 14.19

1 2 4.201 10.662 10.389 2.418 6.780 13.87

1 3 5.669 12.598 12.655 4.261 6.781 13.87

1 1 10.662 9.811 16.773 10.670 9.330 8.26

1 2 10.404 9.416 16.651 10.298 9.742 8.67

1 3 9.608 8.324 15.287 9.021 9.763 8.77

1 1 3.947 9.790 5.879 13.478 5.051 11.06

1 2 4.190 9.759 5.784 13.710 4.956 10.96

1 3 6.072 12.334 8.586 16.727 5.066 10.90

2 1 4.766 9.159 10.127 8.056 3.756 7.44

2 2 2.024 5.570 6.463 4.259 3.985 7.83

2 3 4.390 8.427 9.557 7.534 4.008 7.96

2 1 7.671 5.607 9.859 10.379 8.063 6.17

2 2 6.666 4.136 8.352 8.864 7.939 5.93

2 3 8.262 6.197 9.863 10.757 7.988 5.98

2 1 6.761 13.812 13.840 6.094 5.964 13.06

2 2 4.377 10.786 10.656 3.249 6.533 13.65

2 3 6.915 14.002 14.330 6.943 6.183 13.24

2 1 11.090 10.530 17.462 11.613 9.304 8.41

2 2 11.454 10.666 17.796 12.487 10.230 9.43

2 3 9.665 9.424 15.995 9.890 9.867 9.10

2 1 3.695 9.600 5.580 13.181 4.929 10.82

2 2 4.081 9.811 6.053 13.843 5.218 11.48

2 3 7.038 13.274 9.822 18.050 5.315 11.39
this case, the first component represents reasonably well the
variability of the measurement system.
1.
 The MANOVA method uses geometric mean to estimate the
multivariate index to evaluate the measurement system. This
approach may be incorrect when the ratio

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lMS=lT

p
for each q

pair of eigenvalues provides significant difference in their
calculations.
Taking the numerical example and the simulation study into
account, WPC was the most robust method for assessing a
multivariate measurement system. WPC was able to overcome
such shortcomings as follows: providing a single assessment
for all CTQs in a multivariate GR&R study; estimating the
multivariate %R&Rm index inside the confidence interval even
when the correlation structure of CTQs is considered very low;
and providing a strategy of weighting that guarantees greater
importance for principal components most statistically signif-
icant to estimating the %R&Rm index. Moreover, in scenarios
where the CTQs showed high correlations, the estimates of the
%R&Rm indexes converged to the mean values calculated using
the univariate method.
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Appendix A. Tables of simulated data

See Tables A1–A5.
Acceptable MS

CTQ3 CTQ4 CTQ1 CTQ2 CTQ3 CTQ4

2 5.264 7.387 3.906 7.920 4.897 6.814

4 3.968 6.024 4.126 8.140 5.158 7.222

2 4.654 6.697 3.774 7.703 4.686 6.639

5 8.295 13.336 8.079 6.058 8.106 13.072

2 7.190 12.097 7.933 5.932 7.921 12.917

5 8.530 13.695 7.961 5.962 7.886 12.975

8 10.368 6.512 6.165 13.165 9.207 5.178

2 10.007 6.052 6.081 13.090 9.116 5.122

1 9.979 6.017 5.921 12.920 8.863 4.879

5 13.108 9.058 10.224 9.228 14.260 10.325

8 13.638 9.635 10.310 9.407 14.449 10.467

3 13.792 9.848 9.872 8.861 13.807 9.814

5 11.957 17.046 4.912 10.919 11.837 16.917

0 12.057 17.036 4.966 10.938 11.947 16.953

9 12.068 17.152 4.797 10.808 11.795 16.759

3 4.633 6.516 4.053 7.835 5.027 7.065

3 4.959 7.002 4.059 7.843 5.072 7.075

3 5.067 7.162 3.973 7.703 4.884 6.858

6 8.205 13.152 8.106 6.100 8.129 13.131

4 7.807 12.832 8.192 6.223 8.220 13.184

6 7.948 12.912 8.089 6.052 8.134 13.115

0 8.990 5.154 5.702 12.638 8.651 4.833

0 9.766 5.975 6.135 13.229 9.212 5.402

3 9.223 5.478 6.120 13.178 9.169 5.407

0 13.075 9.301 10.023 9.275 14.055 10.290

1 14.277 10.567 10.311 9.634 14.424 10.691

3 13.846 9.995 9.841 9.049 13.849 10.064

3 11.996 16.958 4.502 10.488 11.565 16.362

3 12.639 17.492 4.717 10.685 11.886 16.684

4 12.588 17.417 5.117 11.230 12.409 17.208



Table A2
Low correlation structure (65%o%PC1r75%).

Unacceptable MS Marginal MS Acceptable MS

i j k CTQ1 CTQ2 CTQ3 CTQ4 CTQ1 CTQ2 CTQ3 CTQ4 CTQ1 CTQ2 CTQ3 CTQ4

1 1 1 4.111 8.485 9.390 7.375 6.162 8.161 7.242 9.449 6.104 7.130 7.107 6.077

1 1 2 5.920 10.437 11.364 9.693 6.531 8.619 7.630 9.668 6.228 7.215 7.276 6.288

1 1 3 3.316 7.063 7.962 6.031 5.833 7.645 6.592 8.714 6.067 7.067 7.067 6.124

2 1 1 8.022 7.102 10.208 12.981 7.675 6.695 12.728 10.740 8.148 5.189 13.168 10.278

2 1 2 5.945 4.415 7.258 9.933 8.280 7.315 13.260 11.498 7.837 4.835 12.818 9.823

2 1 3 8.082 7.230 10.019 13.398 8.688 7.809 13.847 11.986 7.739 4.684 12.636 9.585

3 1 1 5.860 8.892 7.076 10.945 4.470 9.620 10.687 14.649 3.769 8.697 9.638 13.624

3 1 2 5.732 8.444 6.483 10.300 4.579 9.647 10.710 14.957 4.380 9.433 10.394 14.481

3 1 3 6.835 9.596 7.943 12.477 4.771 9.770 10.868 15.007 3.901 8.878 9.855 13.844

4 1 1 11.266 13.409 14.749 15.907 11.281 12.333 11.273 13.417 10.966 12.933 10.980 11.963

4 1 2 8.556 10.584 11.049 12.259 11.313 12.253 11.366 13.294 11.340 13.402 11.400 12.468

4 1 3 8.730 10.571 11.089 12.379 11.224 12.239 11.258 13.393 10.710 12.688 10.668 11.606

5 1 1 5.153 10.948 15.041 16.903 10.920 12.059 16.124 18.322 9.891 10.842 14.843 16.876

5 1 2 4.558 10.561 14.473 16.663 10.579 11.686 15.759 17.937 9.802 10.785 14.771 16.730

5 1 3 5.571 11.624 15.685 18.012 9.600 10.577 14.529 16.538 10.270 11.340 15.365 17.410

1 2 1 1.800 5.166 6.420 3.782 6.066 7.829 6.972 8.949 5.966 6.922 6.943 5.927

1 2 2 3.465 7.036 8.305 6.282 6.199 8.049 7.142 9.112 6.142 7.134 7.143 6.190

1 2 3 3.303 7.105 8.304 5.912 6.255 8.194 7.320 9.397 5.605 6.565 6.510 5.498

2 2 1 8.574 7.474 10.905 13.869 7.456 6.083 12.310 9.990 8.035 4.994 13.062 10.005

2 2 2 8.113 7.162 10.133 13.273 7.888 6.612 12.809 10.528 7.874 4.812 12.831 9.841

2 2 3 8.289 7.095 10.185 13.283 7.668 6.194 12.454 10.088 7.956 4.932 12.945 9.960

3 2 1 7.486 11.012 9.079 13.041 3.589 8.690 9.482 13.641 3.950 8.946 9.946 13.952

3 2 2 6.373 10.026 7.643 12.287 4.858 10.088 10.964 15.368 4.217 9.230 10.263 14.255

3 2 3 7.430 10.788 8.873 13.483 3.696 8.849 9.555 13.868 3.954 9.023 9.938 14.007

4 2 1 10.321 12.407 13.529 14.065 11.801 13.202 12.357 14.389 11.026 12.997 11.006 11.990

4 2 2 11.961 14.210 15.575 16.235 10.363 11.367 10.368 11.981 11.540 13.655 11.687 12.775

4 2 3 10.353 12.665 13.752 14.612 10.415 11.439 10.458 12.175 11.103 13.156 11.173 12.170

5 2 1 5.404 11.448 15.828 17.433 9.659 10.764 14.521 16.487 9.922 10.831 14.882 16.868

5 2 2 4.163 9.997 13.888 15.780 10.311 11.440 15.414 17.573 10.394 11.483 15.514 17.554

5 2 3 4.937 11.134 15.385 17.390 9.521 10.570 14.611 16.509 10.134 11.117 15.181 17.124

Table A3
Medium correlation structure (75%o%PC1r85%).

Unacceptable MS Marginal MS Acceptable MS

i j k CTQ1 CTQ2 CTQ3 CTQ4 CTQ1 CTQ2 CTQ3 CTQ4 CTQ1 CTQ2 CTQ3 CTQ4

1 1 1 7.362 6.254 7.015 4.843 8.554 7.567 8.542 6.526 9.137 8.187 9.171 7.176

1 1 2 9.505 8.687 9.497 7.605 9.157 8.262 9.253 7.239 8.850 7.855 8.846 6.754

1 1 3 8.763 7.739 8.566 6.810 8.926 7.831 8.729 6.716 9.139 8.174 9.168 7.117

2 1 1 7.026 7.037 10.072 13.008 6.397 6.376 9.214 12.230 6.877 6.800 9.843 12.775

2 1 2 7.405 7.609 10.454 13.739 6.967 7.043 9.867 12.949 7.282 7.353 10.415 13.410

2 1 3 7.130 7.030 9.959 13.183 7.063 7.174 10.140 13.143 6.858 6.815 9.794 12.758

3 1 1 6.522 10.962 8.853 11.050 4.675 8.687 6.530 8.540 5.049 9.097 7.079 9.097

3 1 2 4.887 8.604 6.848 8.522 5.091 9.068 7.136 9.178 4.748 8.708 6.668 8.620

3 1 3 5.334 9.349 7.335 9.238 4.842 8.750 6.843 8.818 4.925 8.886 6.918 8.898

4 1 1 10.844 10.396 11.165 15.282 11.896 11.936 12.965 16.928 12.027 12.027 13.092 17.041

4 1 2 12.521 12.695 13.827 17.694 11.526 11.436 12.571 16.388 12.096 12.142 13.130 17.182

4 1 3 12.133 12.381 13.226 17.017 12.795 12.912 13.843 18.042 12.335 12.359 13.445 17.505

5 1 1 8.756 9.568 13.183 12.027 10.210 11.207 15.233 14.192 9.933 10.943 14.927 13.953

5 1 2 9.734 10.728 14.719 13.962 10.412 11.463 15.412 14.623 10.174 11.244 15.214 14.268

5 1 3 9.176 9.969 13.858 12.961 9.778 10.729 14.600 13.599 10.119 11.104 15.138 14.166

1 2 1 10.509 9.705 10.849 8.890 8.920 7.917 8.892 6.928 8.988 7.958 9.020 6.972

1 2 2 9.214 8.467 9.357 7.684 9.124 8.105 9.125 6.983 8.904 7.807 8.860 6.833

1 2 3 8.921 7.893 8.658 6.894 9.822 8.938 9.920 8.014 8.588 7.463 8.420 6.371

2 2 1 6.388 6.283 9.432 12.575 6.974 6.881 9.990 12.912 7.187 7.202 10.255 13.329

2 2 2 6.671 6.771 9.691 12.697 7.563 7.648 10.779 13.802 7.171 7.194 10.252 13.205

2 2 3 6.077 6.154 8.919 11.895 6.503 6.361 9.296 12.272 6.776 6.790 9.838 12.745

3 2 1 5.946 10.287 8.191 10.299 4.304 8.157 6.027 7.898 4.990 8.962 6.950 8.919

3 2 2 6.812 11.074 9.315 11.516 5.615 9.752 7.858 9.867 5.123 9.164 7.160 9.180

3 2 3 5.555 9.353 7.423 9.237 5.117 9.036 7.091 8.936 4.977 8.950 6.955 8.913

4 2 1 11.747 11.835 12.692 16.751 12.580 12.703 13.722 17.752 12.243 12.322 13.345 17.331

4 2 2 13.518 13.463 14.947 18.887 11.828 11.812 12.756 16.701 12.181 12.218 13.248 17.331

4 2 3 11.366 11.255 12.273 15.824 12.340 12.393 13.443 17.307 12.263 12.315 13.311 17.347

5 2 1 12.633 14.025 18.132 17.549 10.236 11.261 15.252 14.218 9.789 10.771 14.773 13.721

5 2 2 8.829 9.892 13.505 12.502 9.338 10.086 14.012 13.116 10.185 11.191 15.168 14.239

5 2 3 11.883 13.279 17.684 16.751 10.037 10.975 14.967 14.080 10.098 11.105 15.160 14.144
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Table A4
High correlation structure (85%o%PC1r95%).

Unacceptable MS Marginal MS Acceptable MS

i j k CTQ1 CTQ2 CTQ3 CTQ4 CTQ1 CTQ2 CTQ3 CTQ4 CTQ1 CTQ2 CTQ3 CTQ4

1 1 1 5.927 2.974 5.798 7.966 5.861 2.819 5.865 7.720 6.345 3.358 6.428 8.414

1 1 2 7.848 5.044 8.006 10.053 5.634 2.604 5.637 7.534 6.204 3.261 6.314 8.307

1 1 3 6.771 3.665 6.807 8.825 5.809 2.792 5.712 7.652 5.839 2.838 5.825 7.851

2 1 1 4.957 7.096 9.025 11.111 3.878 5.801 7.917 9.838 4.054 6.020 7.997 10.013

2 1 2 4.105 5.695 7.928 9.614 4.607 6.680 8.705 10.680 3.720 5.638 7.609 9.624

2 1 3 5.962 8.030 10.125 12.332 3.674 5.766 7.675 9.700 3.976 5.974 7.970 10.001

3 1 1 9.663 10.694 12.706 13.857 8.294 9.252 11.332 12.378 7.886 8.869 10.807 11.795

3 1 2 9.125 10.272 12.202 13.080 8.116 9.276 11.343 12.220 8.153 9.157 11.216 12.211

3 1 3 8.496 9.783 11.970 12.824 7.505 8.518 10.275 11.287 8.062 9.095 11.094 12.117

4 1 1 9.613 10.900 14.776 15.729 9.225 10.052 14.033 14.903 9.926 10.868 14.863 15.893

4 1 2 10.055 11.140 15.028 16.147 10.765 11.886 15.978 16.942 10.191 11.229 15.259 16.285

4 1 3 10.461 11.672 15.652 16.588 10.495 11.629 15.557 16.622 9.858 10.781 14.760 15.774

5 1 1 12.044 14.981 12.968 13.936 12.245 15.285 13.293 14.364 12.085 15.068 13.104 14.096

5 1 2 10.434 13.544 11.527 12.411 11.652 14.689 12.525 13.471 11.842 14.845 12.830 13.807

5 1 3 12.389 15.447 13.295 14.265 11.580 14.634 12.625 13.557 11.981 14.966 12.998 13.981

1 2 1 5.627 2.902 6.034 7.877 6.056 3.066 6.004 8.114 6.122 3.161 6.137 8.124

1 2 2 5.182 2.053 5.297 6.857 5.470 2.528 5.418 7.410 6.283 3.322 6.264 8.337

1 2 3 6.199 3.260 6.182 8.411 6.085 3.132 6.076 8.067 6.056 3.096 6.086 8.108

2 2 1 3.820 6.037 7.657 9.884 4.757 7.033 9.073 11.178 4.128 6.163 8.159 10.200

2 2 2 3.117 4.893 7.158 8.976 3.593 5.572 7.556 9.536 3.878 5.819 7.833 9.781

2 2 3 5.243 7.408 9.637 11.622 4.422 6.401 8.647 10.675 4.296 6.370 8.410 10.404

3 2 1 6.483 7.117 9.155 9.991 7.644 8.622 10.695 11.740 7.928 8.952 10.974 11.950

3 2 2 6.881 7.992 9.898 10.893 7.850 8.937 11.005 11.791 8.109 9.147 11.266 12.245

3 2 3 7.418 8.725 11.047 11.689 7.743 8.764 10.719 11.724 8.009 9.076 11.114 12.041

4 2 1 11.784 12.658 17.130 18.033 9.925 10.929 15.012 15.928 9.815 10.815 14.953 15.875

4 2 2 8.024 8.551 12.753 13.888 9.663 10.704 14.785 15.721 9.555 10.460 14.563 15.418

4 2 3 7.990 8.713 12.642 13.857 9.865 10.906 14.969 15.930 9.755 10.704 14.794 15.699

5 2 1 11.706 14.730 12.825 13.754 11.689 14.676 12.658 13.697 12.024 14.999 13.131 14.068

5 2 2 9.981 12.905 10.666 11.810 11.430 14.276 12.363 13.217 12.048 14.983 13.096 14.019

5 2 3 9.712 12.616 10.555 11.213 11.469 14.330 12.264 13.061 11.960 14.973 13.058 13.936

Table A5
Very high correlation structure (%PC1495%).

Unacceptable MS Marginal MS Acceptable MS

i j k CTQ1 CTQ2 CTQ3 CTQ4 CTQ1 CTQ2 CTQ3 CTQ4 CTQ1 CTQ2 CTQ3 CTQ4

1 1 1 1.770 2.310 3.491 4.832 4.651 5.800 6.886 8.741 3.692 4.633 5.526 7.498

1 1 2 4.541 5.674 6.394 8.693 5.051 6.202 7.288 9.404 4.036 5.046 6.104 8.073

1 1 3 4.368 5.189 6.334 8.184 4.023 4.945 5.975 7.873 3.976 5.037 5.987 7.959

2 1 1 4.293 4.592 5.735 7.380 5.391 6.475 7.330 9.141 6.201 7.229 8.299 10.305

2 1 2 5.830 7.004 7.842 10.045 6.517 7.742 8.710 10.692 5.895 6.820 7.877 9.859

2 1 3 5.921 6.715 7.917 9.768 6.181 7.117 8.123 10.190 6.034 7.050 8.079 10.030

3 1 1 6.591 7.298 8.079 9.932 8.605 9.723 10.854 12.943 8.129 9.160 10.155 12.167

3 1 2 7.219 7.873 8.761 10.841 7.994 9.086 10.004 11.935 8.169 9.201 10.211 12.218

3 1 3 7.269 8.099 9.137 10.827 8.161 9.184 10.184 12.300 8.193 9.156 10.178 12.231

4 1 1 11.607 12.845 14.001 16.535 9.743 10.845 11.741 13.708 10.100 11.114 12.126 14.127

4 1 2 10.218 11.504 12.546 14.532 9.758 10.741 11.779 13.737 10.550 11.682 12.746 14.788

4 1 3 8.177 8.899 9.423 11.454 10.044 11.161 12.168 14.049 10.049 11.026 12.050 14.045

5 1 1 11.790 12.775 13.848 15.883 11.694 12.574 13.515 15.507 11.699 12.633 13.620 15.643

5 1 2 12.991 14.080 15.079 16.945 11.566 12.324 13.354 15.412 12.092 13.109 14.107 16.144

5 1 3 11.405 12.458 13.431 15.565 11.426 12.255 13.321 15.209 11.712 12.666 13.661 15.626

1 2 1 3.416 4.207 5.195 7.287 3.672 4.490 5.503 7.402 3.844 4.792 5.823 7.768

1 2 2 5.788 7.046 8.342 10.471 3.810 4.667 5.631 7.551 4.332 5.399 6.459 8.440

1 2 3 3.276 4.164 5.175 6.967 4.336 5.282 6.379 8.434 3.824 4.803 5.775 7.774

2 2 1 5.500 6.351 7.120 9.275 5.898 6.883 7.961 9.857 5.974 6.960 7.971 9.977

2 2 2 4.564 5.348 6.219 8.084 5.051 5.943 6.912 8.830 6.327 7.372 8.450 10.465

2 2 3 6.251 7.200 8.234 10.507 6.181 7.187 8.370 10.348 5.961 6.940 7.987 9.934

3 2 1 7.708 8.677 9.513 11.200 8.414 9.686 10.664 12.636 7.998 9.015 9.988 12.013

3 2 2 7.505 8.190 9.258 11.315 7.749 8.755 9.783 11.767 7.647 8.631 9.624 11.524

3 2 3 8.696 9.779 10.999 12.983 8.453 9.561 10.515 12.683 7.988 9.017 10.063 12.036

4 2 1 9.368 10.540 11.409 13.288 10.386 11.533 12.574 14.752 9.899 10.870 11.817 13.808

4 2 2 11.325 12.348 13.839 15.881 10.176 11.341 12.445 14.404 10.226 11.287 12.284 14.387

4 2 3 9.259 10.265 11.101 12.799 9.478 10.418 11.467 13.311 10.181 11.220 12.218 14.316

5 2 1 12.650 13.423 14.460 16.587 12.293 13.267 14.216 16.235 11.921 12.912 13.879 15.941

5 2 2 10.976 11.749 12.705 14.936 12.241 13.393 14.378 16.330 11.691 12.693 13.604 15.573

5 2 3 11.092 11.994 12.852 14.619 11.947 12.794 13.967 15.847 12.079 13.062 14.141 16.099
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